Building a Twin Cylinder RACING GAS ENGINE

Here's a Model Craft project that will challenge the interest of all model makers. First of 2 parts.

By GARY MOORE
Craft Print Project No. 61

THERE is something about the building of a high speed miniature racing engine that appeals to every modelmaker. Perhaps the appeal lies in overcoming the many problems involved in its construction or in accomplishing the precision machine work required. Whatever the fascination, the undertaking is an interesting one.

Building a two-cylinder working miniature gas engine from the ground up is a big undertaking. The wood patterns and complicated core boxes needed in having the castings made will be far more difficult to turn out than all the machine work on the little engine itself. The modelmaker who is not so well versed in pattern making can work from a set of ready made castings, as I did in building the engine shown in the photograph, Fig. 1.

The rough castings from which the engine was built are shown in Fig. 2. Wherever possible the castings were made of the light and hard aluminum alloy, Dural. This was done to keep the weight of the finished engine at a minimum. However, some of the smaller castings were made up in bronze where it was felt this metal would be necessary for the castings were boxes shown beyond the scope to be accomplished by the modelmaker, from this reason the built patterns give the beginner work and skill needed to help the skill and

The photog
metal would serve the purpose best. All these castings were made from the patterns and core boxes shown in the photos Figs. 3, 4 and 5.

The building of patterns and core boxes is beyond the scope of this article, but the work can be accomplished, by the experienced modelmaker, from the accompanying drawings. For this reason the complete set of professionally built patterns and core boxes is shown. It will give the beginner a good idea of the amount of work and skill required in constructing a similar set and help him decide whether or not he has the skill and experience to tackle the job.

The photograph, Fig. 3, shows the main cylinder block and crankcase pattern with its various core prints to allow it to be case hollow for the cylinder liners, crankshaft, water circulation space, transfer passages, etc. The photo, Fig. 4, shows this same main pattern with some of the necessary core boxes used in casting the various parts of the interior of the cylinder block and crankcase housing. It also shows the flywheel and cylinder head patterns and the core box for the cylinder top.

Fig. 5 shows the patterns and core boxes for the various small parts which are cast in bronze. The main center bearing, which also acts as a rotary valve, is shown by the two half-discs in the upper right corner along with the core box needed for casting the hollow intake ports in this part. The main end bearings, the rotary valve, the connecting rod and timer patterns can be easily recognized, but the large black core box and the small circular part below it are not so easily made out. This is the pattern and core box for the pistons, and quite a fine job it is, for they must be made just so, with the proper wall thickness on the upper part to receive the rings while the lower skirt must be thinned down to reduce the weight of these reciprocating parts. The bosses for the wristpin must be cast on the inside and of course this must be allowed for in the core box. It can be readily seen from these photos that the patterns are complicated and their construction a little beyond the ability of the beginner who is not well experienced in the art of pattern making. When I had a set of castings, I studied them well and compared them with the blueprints until the working of the little engine was thoroughly understood. Then, and only then, the machine work was started.

As so many of the engine’s smaller parts are fitted to the main cylinder block, it seemed best to start the machine work on this main casting. It was first cleaned up slightly with a coarse file so it would sit level on the faceplate where it was firmly bolted, as in Fig. 6. Here the top of the casting was machined to proper height and faced smooth to form a compression-tight joint for the cylinder head. The position of the casting was shifted off-center on the faceplate, as in Fig. 7, where the holes for the cylinder liners were bored.

The photo shows a heavy steel disc mounted on the faceplate as a counterweight to balance the off-center work. This is good lathe practice as the boring can be accomplished at higher speeds and greater accuracy obtained. When one hole was bored accurately to size the casting was shifted, properly centering the other cylinder.
hole, and this, too, was bored to match its mate exactly.

The casting was then mounted on an angle plate which was fastened to the cross slide of the lathe in place of the compound rest, as in Fig. 8, where the main bearing holes were accurately bored to receive the end bearing plates. This was accomplished by mounting a homemade boring bar between centers, driving it with a lathe dog and moving the work to the cutter by the carriage hand wheel. Light cuts were taken, the tool bit being adjusted several thousandths between cuts until the proper diameter was obtained. The work was then mounted on an expanding mandrel, as in Fig. 9, where the ends were faced smooth to receive the end bearing plates.

The cylinder liners, made up from a cored stick of cast iron, were undertaken next. A solid bar can be used as well but it will require drilling before boring and will take slightly more work to complete than the cored piece. This was clamped in the three-jaw, as in Fig. 10, where the cylinder hole was bored smoothly and accurately to size. First a heavy roughing cut was taken to get under the oxide scale, and this was followed by several light cuts with very fine feed. The boring tool was freshly ground and keenly honed and a very fine power feed used for the final cut in the bore.

The work was then mounted on a mandrel held between centers, as in Fig. 11, where the cylinder holes were made with a center drill and it, too, was bored to match its mate exactly.

1. Main Bearing
2. Cylinder Liner
3. End Bearing
4. Piston Rod
5. Upper Connecting Rod
6. Lower Connecting Rod
7. Connecting Rod
8. Flywheel
9. End Bearing
10. Inspection Plug
11. Cylinder Liner
12. Pipe Fitting
13. Crankshaft
14. Valve-chest
15. Valve-clip
16. Valve-clip
17. Valve-guide
18. Valve-guide
19. Cam
20. Cam
21. Timer Hub
22. Timer Rod
23. Timer Lever

Fig. 11, which turned to the cylinder block, were made with several thousandths between cuts with light cuts with very fine feed, careful to press fit in place.

If the liner did not fit the cylinder, expand it, then re-bore.

JUNE, 1946
Fig. 11, where the outside of the sleeve was turned to exact diameter for a press fit in the cylinder block. Here again heavy roughing cuts were made to get the work down to within several thousandths of finished diameter. Then very light cuts were taken under a very fine power feed, carefully bringing the diameter to a good press fit in the cylinder bore.

If the liners are chilled, to shrink them, and the cylinder block heated in hot water, to expand it, the liners can be quickly pressed in place between the jaws of a heavy vise. When the casting cools and shrinks around the liners they will be held permanently in place.

Machining the cylinder cover was a simple lathe job accomplished by chucking in the four-jaw, as in Fig. 12, where the lower surface was faced smooth and to proper thickness for mounting on the cylinder head. This is a typical shaper job, but where a lathe is the only machine tool in the shop it can be made to serve as well. In mounting the casting in the chuck the work was

LIST OF MATERIALS

1. Main Body
2. Cylinder Head
3. End Bearing Plate (2)
4. Piston (2)
5. Upper Center Bearing
6. Lower Center Bearing
7. Connecting Rod (2)
8. Flywheel
9. End Bearing (2)
10. Inspection Plate (2)
11. Cylinder Liner (2)
12. Pipe Flange (4)
13. Timer Lever
14. Timer Cover
15. Crankshaft
16. Valve-closed Section (2)
17. Valve-open Section (2)
18. Wrist-pin (2)
19. Wrist-pin Plug (4)
20. Cam
21. Timer Housing
22. Timer Rotor Assembly
23. Timer Lock-nut

Casting

Material

Casting

Material
Standard Wherever Metal Is Machined

Over 96% of the machine shops and tool rooms use ARMSTRONG TOOL HOLDERS, because each is a permanent, multi-purpose tool that does the work of a complete set of forged tools. Each is a stronger, more efficient tool that takes cutter bits quickly ground from stock shapes of high speed steel, thus "Saves: All Forgings, 75% Grinding and 90% High Speed Steel."

With 4 or 5 ARMSTRONG TOOL HOLDERS you will be permanently tool-ed up for every operation on your lathe. They are sold by all leading industrial distributors.

Write for:
* Circular of ACE TOOL HOLDERS for Home Workshop Lathe.

ARMSTRONG BROS. TOOL COMPANY
The Tool Holder People
344 N. Francisco Ave. Chicago, U.S.A.

FREE!!
40 PAGE HOBBT CATALOG
Over 1000 Items—Over 300 Photos
Our new 40 page catalog—just off the press—is the "bible" of wide-awake modelers. Practically every nationally advertised model is listed and many, many hard-to-get items. Planes, engine, boats, gliders, supplies, etc. 200 up. Now "Thor" 1/2 H.P. Gas Engine, $10.20 up.

AMERICA'S HOBBY CENTER, INC.
Dept. L66 156 W. 22 St., New York 11, N.Y.

60 PIECE UNIVERSAL ARBOR TOOL SET (3/32"

Includes assortment of engraving and cutting burrs, grind stones, cutoff wheels, polishing buffs, brittle polishing brush, 2 mandrel arbors, garnet and emery sanding discs. If Items bought singly value is over $4.00.

DE LUXE SET 140 Pieces

Includes all above in larger quantities plus many other hard to get items. Many with dismountable shafts—boxed to keep neat and easy to use. Really a $7.95 value. Will ship to any part of the world prepaid. Send Check, Money Order or Cash.

GENERAL AIRE CO.

Science and Mechanics
Oiling Kink

OILING workshop machinery is done easily with the aid of an old automobile gas line where an oil-can spout will not reach the oil hole. Bend the gas line to an "L" shape and place one end in the oil hole. With an oil can run the oil through the gas line into the oil hole.

This article will be concluded in the next issue of Science and Mechanics.)

Electric Heating Element FLUX

Repair burned out electric elements of coffee urns, electric stoves, flat irons, toasters, and other electrical appliances. Simply apply Christy Electric Heating Element Flux to the break, turn on the current and FLUX will do the job in 15-30 seconds. Generous size package enough to repair 50 elements sent postpaid for only $1.00.

ELECTRICAL APPLIANCE REPAIR PARTS

- BENDALL Iron element. Guar. 1 year. Package of 6...$3.12
- Toaster element forms. Clear Mi.cro. Fits most toasters. 10 for 1.80
- Heating element wire 10 ft. coiled 3/4" O.D. Wire at discount...2.55
- Appliance cord. Rubber covered. Stranded copper wire. 100 ft. 4.50
- Ribbon element heating wire. Std. size. 100 ft. 1.75
- Perforator elements. Universal. Plat type. 2 ft. gra.z. 2 for...1.20
- Element cement. Withstands 500° F. 1 lb. p/kg. $1.00. 5 lb. p/kg. 3.50
- Lead wire. Adhesive covered heater hook-up wire. 10 ft. 1.00
- Iron Core Sets with complete plug attachments. 10 for 5.00
- Carbon brush set. Assorted. 1/4" brushes, 15 springs. Complete set 3.00
- Screw removers. Complete set 6 removers, 6 drills. 1/4" to 1" 4.20

APPLIANCE REPAIR TOOLS & SUPPLIES

- Bearings tools. Enable you to install all sizes motor bearings from 3/8" to 1 1/2" O.D. Complete with 5 adapters and instructions. $6.69
- Adjustable Reamers. High-speed steel blades. Complete set of 11 reamers ranging from 3/16" to 1/2" 11.00

HOW TO FIX IT—BOOKS

- Modern Electric & Gas Refrigeration...$5.00
- Practical Electricity & House Wiring...$1.50
- Refrigeration Service Manual...$2.00

Here is your opportunity to save on repairing your own appliances and to earn extra money repairing appliances for friends and neighbors.

CHRISTY SUPPLY COMPANY

2835 N. Central Ave. Dept. T-153 Chicago 34, III.

BUILT YOUR OWN FAN

With That Old Motor

One piece cast aluminum propellers used for cooling and ventilating. Also available in dealer's discount. (At the right are available in dealer's discount. $0.85

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>1.20</td>
</tr>
<tr>
<td>3 1/2</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>2.00</td>
</tr>
<tr>
<td>4 1/2</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Let us know what you want and we'll give you the price. We supply standard no. 22. $0.50

FREE 10% Excise Tax

FIT-RITE

makes False Teeth TIGHT

Makes loose dental plates fit snugly and comfortably. LASTS FOR MONTHS!

Simply squeeze on dental plate and put in your mouth. Hardens and becomes part of plate. Money-back guarantee.

FREE Generous portion of Dental Plate Cleaner with each order. Send 50c or mailed order post paid.

Fit-Rite Co., 1573 Milwaukee Ave.

Dept. 6-A21, Chicago, Ill.

VISE-GRIP

VISE-GRIP WRENCH

Gives 1 Hand TON-GRIP

Vise-Grip does more things, easier and quicker, than any other tool! Remains locked to the work with hands removed. Holds anything, any shape. Light, trim, handsome. Made of fine alloy steel. Electroplated.

Sold by Tool Jobbers and Dealers

PETERSEN MFG. CO.

Building a Twin Cylinder RACING GAS ENGINE

Part 2. Gary Moore completes the making of a beautiful model gasoline engine.

BY GARY MOORE
Craft Print Project No. 61

The crankshaft of the little engine must be turned from solid steel bar stock to withstand the terrific pounding it will receive when running at high speeds. The built up type of crankshaft would soon break down under the hammering this little engine would give it. With the steel blank cut to proper length and the ends accurately squared and smoothly faced the dimensions in the drawings were carefully transferred to the work first laying out the important center lines, as indicated in Fig. 17, and carrying them around on the ends of the stock to accurately locate the center holes for mounting the work between centers when turning the crankpins and the main part of the shaft itself. With the work completely laid out, and the lines deeply scored with a sharp scriber, the three center holes on each end were accurately drilled, care being taken to bring them all to the same depth. The steel blank was then mounted between centers in the lathe, as indicated in the drawing, Fig. 18, where one of the crankpins was turned to exact diameter and the inside of the webs faced smooth to within several thousandths of their final width to allow for facing after the rotary valves have been attached. The work was then shifted with the lathe centers in the opposite center holes, as indicated in Fig. 19, where the second crankpin was machined in the same manner as the first. The waste stock between the two crankpins was cut away, as shown in the drawing, Fig. 20, and the castings for the rotary valves were mounted in place. These castings were first sawed in two and the flat surfaces at the joint machined smooth and true for
a perfect fit on the crank webs. Two of the valve parts were drilled and counter-bored and the other two drilled and tapped to receive the three screws which hold them in place on the crank webs. The size and location of these screw holes are clearly laid out in the drawings. With the rotary valves fastened in place the work was again mounted between centers where the inside surfaces of the valves were faced smooth and the webs brought to their final thickness. When the inner faces of both sets of crank webs were machined the work was removed from the lathe and the waste stock on either side of the main shaft was cut away including the crankpin center holes as they were no longer needed. The work was again replaced in the lathe, fig. 21, where the main shaft was brought to the dimensions in the drawings and the opposite side of each rotary valve faced smooth along with the crank webs bringing both to their proper thickness. The outer edges of the valves were faced smooth and turned to exact diameter and at the same time the ends of the crank webs were nicely rounded and all brought to exactly the same length. The ends of main shaft reduced in diameter, as indicated in the drawings, and the threads cut with the
work still in the lathe. The flywheel end of the shaft was beveled to match the tapped hole in the flywheel and the tip of the shaft threaded for the retaining nut. As each of the crankpins and the three sections of the main shaft were turned to final diameter they were brought to a smooth finish with a fine Swiss file and polished with fine well worn emery cloth. The completed crankshaft, with rotary valves attached, is shown in the photo, fig. 22, and again in the photo, fig. 23, with the center bearing, the connecting rods, and their pistons mounted in place ready for final assembly.

In machining the connecting rods the first operation was to drill the two screw holes on the big end before cutting the bearing cap off. This makes the work easier and accurately aligns the holes in each part after the cap has been cut off and the flat surfaces at the joint machined smooth. The screw holes in the big end of the rod were then tapped while those in the cap were opened out to clear the screws. The photo, fig. 24, shows one of the rods with the cap cut off and the holes drilled and threaded while the other rod has the cap screw fastened in place and the big end drilled for the crank pin. The work was next chucked in the three-jaw, as in fig. 25, where the wrist pin hole was drilled and reamed to final size. The connecting rod was then mounted on
The two wrist pins were made up from drillrod, drilled hollow and the two brass ends made up and inserted following the dimensions on the drawings closely. These are shown, along with the completed pistons and connecting rods, in the photo, fig. 29.

The flywheel was machined almost entirely in the three-jaw chuck while mounted as in fig. 30. Here the inside of the wheel was bored, the hub turned to diameter and faced smooth and to proper length and the crankshaft hole drilled. The edge and face of the rim were rough turned and the work reversed in the chuck where the turning operations were repeated. The flywheel was then mounted on a mandrel, as in fig. 31, where a light facing cut was accomplished through the inside hole and the two bearings were inserted.

A list of materials is given below:

LIST OF MATERIALS—CARBURETOR

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Carburetor Body</td>
</tr>
<tr>
<td>2.</td>
<td>Gasoline Chamber</td>
</tr>
<tr>
<td>3.</td>
<td>Gasoline Chamber Cover</td>
</tr>
<tr>
<td>4.</td>
<td>Carburetor Nozzle</td>
</tr>
<tr>
<td>5.</td>
<td>Throttle</td>
</tr>
<tr>
<td>6.</td>
<td>Float Valve Seat</td>
</tr>
<tr>
<td>7.</td>
<td>Union Nut</td>
</tr>
<tr>
<td>8.</td>
<td>Carburetor Float</td>
</tr>
<tr>
<td>9.</td>
<td>Throttle Lever</td>
</tr>
<tr>
<td>10.</td>
<td>Needle Valve</td>
</tr>
<tr>
<td>11.</td>
<td>Needle Valve Cap</td>
</tr>
<tr>
<td>12.</td>
<td>Float Needle Valve</td>
</tr>
<tr>
<td>13.</td>
<td>Float Needle Head</td>
</tr>
<tr>
<td>14.</td>
<td>Throttle Lever Spacer</td>
</tr>
</tbody>
</table>

MISCELLANEOUS MATERIALS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3-48x5/8" Filister Head Screws</td>
</tr>
<tr>
<td>2.</td>
<td>3-48x5/8" Round Head Screw</td>
</tr>
<tr>
<td>3.</td>
<td>5-40x1/4" Round Head Screw</td>
</tr>
<tr>
<td>4.</td>
<td>5-40 Hexagonal Nut</td>
</tr>
<tr>
<td>5.</td>
<td>3-40x5/8" Filister Head Screw & Hex. Nut</td>
</tr>
<tr>
<td>6.</td>
<td>3/8 dim. x 1/8" Hole Washer</td>
</tr>
</tbody>
</table>

A list of the various hole dimensions is also included.

Hole Dimensions

- 5/8 inch diameter
- 3/8 inch diameter
- 1/4 inch diameter
- 1/8 inch diameter
- 5/32 inch diameter
- 3/32 inch diameter
- 1/16 inch diameter

The timer hole was bored to size, as shown mounted in fig. 32. The timer was a piece of hard cold-drawn steel, 1/4 inch in diameter and 1/4 inch long. The screws which held the various points in place were 1/4 inch long and countersunk, as shown mounted in fig. 33.

The timer housing was a piece of hard cold-drawn steel, 1/4 inch in diameter and 1/4 inch long. The screws which held the various points in place were 1/4 inch long and countersunk, as shown mounted in fig. 33.

The timer cover was a piece of hard cold-drawn steel, 1/4 inch in diameter and 1/4 inch long. The screws which held the various points in place were 1/4 inch long and countersunk, as shown mounted in fig. 33.

The timer cover was a piece of hard cold-drawn steel, 1/4 inch in diameter and 1/4 inch long. The screws which held the various points in place were 1/4 inch long and countersunk, as shown mounted in fig. 33.
was taken on the sides and face of the rim to insure its being concentric with the crankshaft hole and running dead true. The wheel was then remounted in the three-jaw chuck and with a reamer held in the tailstock the shaft hole was taper reamed, as called for in the drawings, to match the taper turned on the end of the crankshaft. This operation was accomplished with care in mounting the wheel squarely in the chuck and in using the reamer and when the flywheel was finally mounted on the crankshaft it ran dead true.

The timer lever casting was mounted in the four-jaw chuck, as in fig. 32, where the large hole was bored for mounting it on the rear bearing of the engine. The balance of the work was accomplished in the drill press where the various holes were drilled and tapped for the screws which hold the breaker arm and contact points in place. An ordinary automobile breaker arm and contact points are used and these are shown mounted in place in the photo, fig. 33.

The timer housing was made up from a small piece of hard rubber turned and bored to the dimensions in the drawings and drilled for the screws which hold it in place and the necessary binding posts. The rotor was also made up from hard rubber, turned to diameter and shouldered down part way to receive the brass brush as described and illustrated in the drawings. The timer cover was machined from a casting while held in the chuck, as in fig. 34, where it was bored for a snap fit on the timer housing and the center hole drilled. The balance of the holes for fastening it in place, were drilled in the drill press the size and location of these being accurately laid out in the drawings. The completed fully assembled timer is shown in fig. 35.

The carburetor is built up from several castings with the balance of the parts made up from brass rod and other material found around the shop. Work was started on the gas chamber by chucking it, as shown in fig. 36, where it was bored to proper depth and diameter and the gas connection hole in the bottom drilled and tapped at this same chucking. The balance of the holes were drilled in the drill press following the dimensions in the drawings. The carburetor body casting was a little more difficult to machine. This required the use of an angle plate for facing the mounting flange with the work strapped to the angle plate and that in turn mounted on the faceplate of the lathe. In cross-drilling the large hole for the throttle the work was held in the four-jaw chuck where the hole was drilled and reamed to proper size and the boss faced smooth for a tight fit against the throttle flange and lever. The throttle was made up from bar stock, turned to the dimensions in the drawings and the intake hole cross-drilled. The gas chamber cover was machined from the casting furnished for this part, chucking by the lug cast on for this purpose, and turning to a good snap fit on the gas chamber. Reversed in the chuck the top was faced smooth and the lug cut partly away and the fine needle valve hole drilled. The main jet needle valve was made up from brass rod, turned to size and knurled and threaded and the hole drilled in its end for the nickel silver needle which was soldered in place. It was then filed to a fine point while the work was held in the chuck with the lathe running at high speed. The cork float was made up from an ordinary bottle cork chucked in the lathe and turned to shape with an ordinary sandpaper tool made by gluing a strip of sandpaper to a thin piece of wood. The hole for the needle valve was drilled and the cork given a thin coat of shellac. The needle valve was made up as described in the drawings and inserted in the cork float. The various other parts were made up from brass rod and other material found around the shop. The completed parts of the carburetor are shown in the photo, fig. 37, ready for assembly.

With the various parts of the little motor completed the final assembly began. Much hand fitting was required and great care was taken to see that each moving part worked properly without binding anywhere. The crankshaft with its rotary valve assembly was inserted in the crankcase and the rods with their pistons were fastened in place. The end bearing plates were slipped on the shaft and screw fastened to the crankcase, the carburetor was mounted to the intake flange of the cylinder block and the
MODELMAKERS

JEWELERS . . . INSTRUMENT MFRS.

ARBOR PRESS

The new "K" Press is recommended for high speed production and assembly presswork. Provides fine sensitive control for pressing small shafts, gears, features and bushings. Frame, table and standard are grey iron well braced and accurately machined. Ram takes up provided. Table and standard removable for large work. Finish machine gray. Height 714"; over table 95/16"; base 45/16"; ram 15/16"; ram travel 21/8"; approx. pressure 250 lb. wt. 7 lbs. Prompt delivery. (Straightening attachment supplied with press.)

See your dealer or order direct. Postage, wt. 7 lbs.

H. D. HERDER, Tool Specialties
2121 Brook Dr., Kalamazoo, Mich.

MINIATURE ENGINES

Gasoline—Steam

THE WORLD’S MOST FASCINATING HOBBY

Build them yourself — in your own shop
With your own tools

Send 10 cents for my illustrated catalogue listing the world’s largest selection of miniature engine castings and drawings.

WAYNE MILLER
Suite 204
Engineering Bldg., Chicago 6, U.S.A.

MODEL: Gasoline Engine

Ready to Run

A precision built and engineered single cylinder, FOUR-CYCLE model gasoline engine: adjustable valves; steel pinion and cam gears; a real ignition system; speed 360 to 3,000 rpm; develops approximately 1/2 hp. Bench tested and ready to run. Available with stationary or marine engine base. Full instructions. Lots of fun. Price: $10.00 complete, with car, condenser and starting rope. Immediate delivery.

The THOMPSON ENGINEERING CO.
216 Winchester Place, Grand Rapids 2, Mich.

MOTO-TOOL

THE “POCKET-SIZE” MACHINE SHOP

PUT THIS “WAR VETERAN” TO WORK

Tough grinding and polishing jobs in tool rooms and machine shops fall away under the speed and versatility of Dremel Moto-Tool. The “Pocket-Size” Machine Shop is engineered for vibrationless operation. Uses 110-120 A.C. or D.C. current. Patented automatic chuck lock pin makes removal of accessories easy. Pin disengages automatically ... prevents accidental burning out of motor.

Only Moto-Tool Have All These Features

- Sharpening
- Finishing
- Threading
- Drilling
- Engraving
- Sawing
- Sanding
- Burnishing
- Grinding
- Polishing
- Burbishing
- Cutting
- Shaping
- Carving
- Cleaning

MOTO-SAW COMING!

Dremel Moto-Saw... will be back in stock soon. Write for details now.

MOTO-SAW COMING!

27,000 R.P.M.

DREMEL MFG. CO., Dept. 176-H, RACINE, WISCONSIN

Safety Aid

IT IS very easy to slip and seriously injure oneself by falling on a circular saw or your foot might slip and cause your finger to slip in the jig saw. Placing 3 x 2 rubber stairway footing as shown in the illustration is a simple and inexpensive safety device for your workshop.—MURRAY JENNINGS.